Yin Yang?
>
> https://phys.org/news/2023-08-visualizing-mysterious-quantum-entanglement-photons.html
>
> Visualizing the mysterious dance: Quantum entanglement of photons captured in real-time
>
> by University of Ottawa <http://www.uottawa.ca/>
Disclaimer: Informationen som läggs upp på denna blogg är inte jobbrelaterad utan endast av mitt eget intresse. Lägger upp eller länkar till intressanta inlägg på nätet.
24 augusti 2023
12 augusti 2023
Machine Learning for N00bs -- Sam Bowne
Från Defcon 2023
>
> https://samsclass.info/ML/ML_Sum23.shtml
>
> Machine Learning for N00bs
>
> Understanding Prompts
>
> ML 130: Prompt Injection (95 pts extra) <https://samsclass.info/ML/proj/ML130.htm>
> ML 131: Generating Python Code with Bard (40 pts extra) <https://samsclass.info/ML/proj/ML131.htm>
> Violent Python Challenges <https://samsclass.info/124/VP_Sum23.htm>
> Google Learning
>
> GL_Badges: Google Learning (90+ pts extra) <https://samsclass.info/ML/proj/GL_Badges.htm>
> Awareness: Demonstrating Capabilities
>
> ML 100: Machine Learning with TensorFlow (65 pts extra) <https://samsclass.info/129S/proj/ML100.htm>
> ML 101: Computer Vision (10 pts extra) <https://samsclass.info/129S/proj/ML101.htm>
> ML 102: Breaking a CAPTCHA (10 pts extra) <https://samsclass.info/129S/proj/ML102.htm>
> ML 103: Deblurring Images (40 pts extra) <https://samsclass.info/129S/proj/ML103.htm>
> Technical: Inner Components
>
> ML 104: Analyzing Input Data (20 pts extra) <https://samsclass.info/129S/proj/ML104.htm>
> ML 105: Classification (15 pts extra) <https://samsclass.info/129S/proj/ML105.htm>
> ML 106: Data Poisoning (10 pts extra) <https://samsclass.info/129S/proj/ML106.htm>
> Attacks
>
> ML 107: Evasion Attack with SecML (40 pts extra) <https://samsclass.info/129S/proj/ML107.htm>
> ML 108: Evasion Attack on MNIST dataset (40 pts extra) <https://samsclass.info/129S/proj/ML108.htm>
> ML 109: Poisoning Labels with SecML (30 pts extra) <https://samsclass.info/129S/proj/ML109.htm>
> ML 110: Poisoning by Gradients (40 pts extra) <https://samsclass.info/129S/proj/ML110.htm>
> ML 111: Poisoning the MNIST dataset (40 pts extra) <https://samsclass.info/129S/proj/ML111.htm>
> Defenses
>
> ML 140: Deep Neural Rejection (45 pts extra) <https://samsclass.info/ML/proj/ML140.htm>
> Large Language Models
>
> ML 120: Bloom LLM (30 pts extra) <https://samsclass.info/129S/proj/ML120.htm>
> ML 121: Prompt Engineering Concepts (20 pts extra) <https://samsclass.info/129S/proj/ML121.htm>
> ML 122: Comparing LLMs on Colab (20 pts extra) <https://samsclass.info/129S/proj/ML122.htm>
>
> https://samsclass.info/ML/ML_Sum23.shtml
>
> Machine Learning for N00bs
>
> Understanding Prompts
>
> ML 130: Prompt Injection (95 pts extra) <https://samsclass.info/ML/proj/ML130.htm>
> ML 131: Generating Python Code with Bard (40 pts extra) <https://samsclass.info/ML/proj/ML131.htm>
> Violent Python Challenges <https://samsclass.info/124/VP_Sum23.htm>
> Google Learning
>
> GL_Badges: Google Learning (90+ pts extra) <https://samsclass.info/ML/proj/GL_Badges.htm>
> Awareness: Demonstrating Capabilities
>
> ML 100: Machine Learning with TensorFlow (65 pts extra) <https://samsclass.info/129S/proj/ML100.htm>
> ML 101: Computer Vision (10 pts extra) <https://samsclass.info/129S/proj/ML101.htm>
> ML 102: Breaking a CAPTCHA (10 pts extra) <https://samsclass.info/129S/proj/ML102.htm>
> ML 103: Deblurring Images (40 pts extra) <https://samsclass.info/129S/proj/ML103.htm>
> Technical: Inner Components
>
> ML 104: Analyzing Input Data (20 pts extra) <https://samsclass.info/129S/proj/ML104.htm>
> ML 105: Classification (15 pts extra) <https://samsclass.info/129S/proj/ML105.htm>
> ML 106: Data Poisoning (10 pts extra) <https://samsclass.info/129S/proj/ML106.htm>
> Attacks
>
> ML 107: Evasion Attack with SecML (40 pts extra) <https://samsclass.info/129S/proj/ML107.htm>
> ML 108: Evasion Attack on MNIST dataset (40 pts extra) <https://samsclass.info/129S/proj/ML108.htm>
> ML 109: Poisoning Labels with SecML (30 pts extra) <https://samsclass.info/129S/proj/ML109.htm>
> ML 110: Poisoning by Gradients (40 pts extra) <https://samsclass.info/129S/proj/ML110.htm>
> ML 111: Poisoning the MNIST dataset (40 pts extra) <https://samsclass.info/129S/proj/ML111.htm>
> Defenses
>
> ML 140: Deep Neural Rejection (45 pts extra) <https://samsclass.info/ML/proj/ML140.htm>
> Large Language Models
>
> ML 120: Bloom LLM (30 pts extra) <https://samsclass.info/129S/proj/ML120.htm>
> ML 121: Prompt Engineering Concepts (20 pts extra) <https://samsclass.info/129S/proj/ML121.htm>
> ML 122: Comparing LLMs on Colab (20 pts extra) <https://samsclass.info/129S/proj/ML122.htm>
Prenumerera på:
Inlägg (Atom)