12 augusti 2023

Machine Learning for N00bs -- Sam Bowne

Från Defcon 2023
>
> https://samsclass.info/ML/ML_Sum23.shtml
>
> Machine Learning for N00bs
>
> Understanding Prompts
>
> ML 130: Prompt Injection (95 pts extra) <https://samsclass.info/ML/proj/ML130.htm>
> ML 131: Generating Python Code with Bard (40 pts extra) <https://samsclass.info/ML/proj/ML131.htm>
> Violent Python Challenges <https://samsclass.info/124/VP_Sum23.htm>
> Google Learning
>
> GL_Badges: Google Learning (90+ pts extra) <https://samsclass.info/ML/proj/GL_Badges.htm>
> Awareness: Demonstrating Capabilities
>
> ML 100: Machine Learning with TensorFlow (65 pts extra) <https://samsclass.info/129S/proj/ML100.htm>
> ML 101: Computer Vision (10 pts extra) <https://samsclass.info/129S/proj/ML101.htm>
> ML 102: Breaking a CAPTCHA (10 pts extra) <https://samsclass.info/129S/proj/ML102.htm>
> ML 103: Deblurring Images (40 pts extra) <https://samsclass.info/129S/proj/ML103.htm>
> Technical: Inner Components
>
> ML 104: Analyzing Input Data (20 pts extra) <https://samsclass.info/129S/proj/ML104.htm>
> ML 105: Classification (15 pts extra) <https://samsclass.info/129S/proj/ML105.htm>
> ML 106: Data Poisoning (10 pts extra) <https://samsclass.info/129S/proj/ML106.htm>
> Attacks
>
> ML 107: Evasion Attack with SecML (40 pts extra) <https://samsclass.info/129S/proj/ML107.htm>
> ML 108: Evasion Attack on MNIST dataset (40 pts extra) <https://samsclass.info/129S/proj/ML108.htm>
> ML 109: Poisoning Labels with SecML (30 pts extra) <https://samsclass.info/129S/proj/ML109.htm>
> ML 110: Poisoning by Gradients (40 pts extra) <https://samsclass.info/129S/proj/ML110.htm>
> ML 111: Poisoning the MNIST dataset (40 pts extra) <https://samsclass.info/129S/proj/ML111.htm>
> Defenses
>
> ML 140: Deep Neural Rejection (45 pts extra) <https://samsclass.info/ML/proj/ML140.htm>
> Large Language Models
>
> ML 120: Bloom LLM (30 pts extra) <https://samsclass.info/129S/proj/ML120.htm>
> ML 121: Prompt Engineering Concepts (20 pts extra) <https://samsclass.info/129S/proj/ML121.htm>
> ML 122: Comparing LLMs on Colab (20 pts extra) <https://samsclass.info/129S/proj/ML122.htm>

Inga kommentarer:

Skicka en kommentar